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SECTION – A

Answer ALL questions.



                                 10 X 2 = 20

1. Define Consistent estimator. Give an example.

2. Give two examples for unbiased estimator.
3. Define UMVUE.

4. Describe the concept of Bounded completeness.

5. Describe the Method of Minimum Chi-square estimation.

6. State an MLE of[image: image2.png]


λ based on a random sample of size n form a Poisson Distribution 

with parameter λ.
7. Describe the concept of Baye’s estimation. 

8. Define Loss function. 

9. Describe the Method of Least Squares.

10. Define BLUE.

SECTION – B

Answer Any FIVE questions.



                    

   5 X 8 = 40

      11. Derive an unbiased estimator of [image: image4.png]


, based on a random sample of size n form B (1,[image: image6.png]


).

12. Let { T
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 n = 1, 2,3, ….. } be a sequence of estimators such that       
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.

14. Show that the family of Binomial distributions {B (1,[image: image18.png]


).0 < θ < 1} is complete. 
15. Describe estimation of parameters by “Method of Maximum Likelihood”

16. Describe any two properties of MLE, with examples.

17. Explain prior and posterior distributions.

18. Derive the least square estimator of β1 under the model Y = β0 + β1X+[image: image20.png]



SECTION – C

Answer any TWO questions.



                                     2 X 20 = 40
19. a. State and prove Chapman-Robbin’s inequality.                                          [12]

      b Using Factorization theorem derive a sufficient statistic for μ based on a random  

          sample of size n from N (μ, 1), MϵR





 [8]

20. a. State and prove a necessary and sufficient condition for an unbiased estimator to be a  
    UMVUE.
[15]

b. If T1 and T2 are UMVUES  of ((1(() and ((2(() respectively, then show that T1+T2 is the UMVUE of ((1(() and ((2(().
[5]
21 a.  Explain the concept of estimation by the method of modified minimum chi-square.  [8]

     b. Let 
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 be a random sample from a distribution with density function 

                          f (x, θ) =   [image: image23.png]L
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[12]

    Find the maximum likelihood estimator of [image: image25.png]


 and examine whether it is consistent.
 22. Explain:  i) Risk function.              ii) Method of Moments

                           iii) Completeness     iv). Gauss –Markov model                           [ 4 x 5 ]                        
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